logo
logo
ArEn
عنوان :

ارائه یک مدل ترکیبی انعطاف پذیر برای پیش بینی قیمت محصولات کشاورزی؛ مطالعه موردی بازار گوشت ایران

ناشر :

اقتصاد و توسعه کشاورزی - Journal of Agricultural Economics & Development

سال :

1402/2023

نویسنده :

حیدری رضا

چکیده

موضوع قیمت یک عامل کلیدی در فعالیت مالی و تجاری مرتبط با بخش کشاورزی است، به گونه ای که همواره فعالان بخش کشاورزی در معرض ریسک های ناشی از نوسان قیمت محصولات کشاورزی قرار دارند. این مسئله نه تنها منجر به تصمیم گیری نادرست در زمینه تولید بهینه محصولات در سال جاری می شود، بلکه می تواند اجرای تعهدهای مالی آنان را در سال های آتی با خطر روبه رو سازد. در سال های اخیر، نوسانات قیمت محصولات کشاورزی در ایران افزایش یافته است و لذا پیش بینی دقیق تغییرات قیمت ضروری به نظر می رسد. در مطالعه حاضر، یک رویکرد ترکیبی انعطاف پذیر در پیش بینی قیمت ماهیانه گوشت گاو، گوشت گوسفند و مرغ از آوریل 2001 تا مارس 2021 ارائه شده است. در این روش جدید، سه روش ترکیب انفرادی مختلف شامل روش میانگین گیری، روش تنزیل شده و روش انقباض برای ترکیب خروجی های پیش بینی مربوط به سه مدل ترکیبی متشکل از شبکه عصبی پرسپترون (MLPANN)  و الگوریتم های تکاملی (الگوریتم ژنتیک GA، الگوریتم ازدحام ذرات PSO و الگوریتم رقابت استعماری ICA) مورد استفاده قرار گرفتند. نتایج حاصل از این مطالعه نشان داد که بر اساس شاخص آماری RMSE، مدل ترکیبی پرسپترون- الگوریتم رقابت استعماری (MLPANN-GA) و روش انفرادی انقباضی با (K=0.25) دارای بالاترین دقت در پیش بینی قیمت گوشت گاو، گوسفند و مرغ است. همچنین عملکرد مدل پیشنهادی از اجزای آن (مدل های ترکیبی) بهتر است. روش پیشنهادی برای پیش بینی از نظر نوع محصول یا جایگزینی اجزای تشکیل دهنده دارای انعطاف پذیری است.