logo
logo
ArEn
عنوان :

بهبود طبقه بندی تصاویر ابرطیفی با استفاده از مدل ترکیبی شبکه های کپسول و درخت تصمیم تقویتی

ناشر :

سنجش از دور و GIS ایران - Iranian Journal of Remote Sensing & GIS

سال :

1402/2023

چکیده

با گسترش دانش سنجش از دور، استفاده از تصاویر هایپراسپکترال روزبه روز افزایش و عمومیت می یابد. طبقه بندی یکی از محبوب ترین موضوعات در سنجش از دور ابرطیفی است. طی دو دهة گذشته، روش های بسیاری برای مقابله با مشکل طبقه بندی داده های هایپراسپکترال پیشنهاد شده است. در پژوهش حاضر، ساختاری مبتنی بر یادگیری شبکه های کپسول برای طبقه بندی تصاویر ابرطیفی به کار رفته است ؛ به گونه ای که ساختار شبکه بتواند، با استفاده از یک لایة کانولوشنی و یک لایة کپسول، بهترین حالت تولید ویژگی ها را داشته باشد و درعین حال از بیش برازش شبکه روی نمونه های آموزشی جلوگیری کند. نتایج به دست آمده نشان از کیفیت بالای ویژگی های تولیدی در ساختار پیشنهادی دارد. درراستای بهبود دقت طبقه بندی، رویکرد استخراج ویژگی ازطریق شبکة طراحی شده و طبقه بندی با استفاده از الگوریتم درخت تقویتی XGBoost، با روش طبقه بندی ازطریق شبکة عمیق سراسری مقایسه شد تا، علاوه بر بررسی و کیفیت سنجی ویژگی های عمیق برداری تولیدی به روش پیشنهادی در طبقه بندی کننده های گوناگون، میزان توانایی شبکه های عمیق سراسری نیز، در کاربرد طبقه بندی، بررسی شود. رویکرد کپسول پیشنهادی شامل سه لایة اصلی است: 1)  Prime با کپسول هایی به اندازة 8 و 32 فیلتر 9×9 و گام حرکتی 2 ؛ 2) Digitcaps دارای دَه کپسول شانزده بعدی ؛ 3) لایة تماماً متصل. نتایج بررسی دو رویکرد برای شبکة عمیق و نیز ترکیب شبکه های کپسول با الگوریتم درخت تقویتی XGBoost مقایسه شد. رویکردهایی همچون SVM، RF-200، LSTM، GRU، و GRU-Pretanh برای مقایسة رویکرد پیشنهادی براساس پیکربندی هایی درنظر گرفته شدند که در تحقیقات به آنها اشاره شده بود. برای ارزیابی مدل پیشنهادی، مجموعه دادة Indian Pines نیز، شامل شانزده کلاس متفاوت، به کار رفت. با استفاده از روش پیشنهادی ترکیبی، طبقه بندی تصاویر با دقت 99% روی داده های آموزش و دقت 5/97% روی داده های تست انجام می شود.